

Oracle Banking Digital

Experience
Custom Service Development Guide

July 2017

Oracle Banking Digital Experience Custom Service Development ii

Custom Service Development Guide

July 2017

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights
are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy,
and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability,
is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Oracle Banking Digital Experience Custom Service Development Guide iii

Table of Contents

1. Creating your own REST API with DIGX Framework .. 4

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 4

1. Creating your own REST API with DIGX Framework

DIGX Framework overview:

Let’s go through the building blocks of DIGX framework. To build a REST API, each of these
framework components (as mentioned below) needs to be addressed and that’s why it becomes
important to have a holistic idea about each of them. The arrangement of all of these framework
components can be clearly understood in the following diagram:

Figure 1 DIGX Service Layer

1. REST: The endpoint layer which gets invoked whenever a request URI is called. Also
known as the layer which contains REST annotations and path to resources or sub-
resources of an application

2. Service: Also called as module layer of the framework. Generally, the core modules of
DIGX application will have their own service implementation classes responsible for
implementing core business logic, validation and security checks

3. Assemblers: These are the mapping classes which convert data object containing request
or response parameters into domain or database compatible form. These classes help us to
get the required domain objects which can be further used in object-relational mapping

4. Business Policy/ System Constraints: Before letting the query data read or persisted in
the core application, certain business policies need to be validated. This separate layer of
constraints check let the application behave as per the policies configured

5. Domain/Entity: Represents the Java Object form of Database. This domain layer also
contains data to be persisted or query response fetched through Object relational mapping

6. Domain Repository: The term ‘repository’ denotes any data storage component. Each
module of the application will have its own repository to manage its CRUD operations and
that can be easily done using this component of the DIGX framework

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 5

7. Domain Repository Adapter: Adapters are the connecting points to some external system
and as the name suggests, this part of the framework contacts two kinds of repositories of
DIGX application – Local Repository and Remote Repository. Eventually, the configured
one out of these two will be invoked

8. Adapters: Finally these are the adapter classes that can call either Local Database (DIGX
specific tables) or Remote Repository (external system). Remote adapters can further be
mocked if required

9. External System/ Host: The core banking application such as UBS or OBP or any third-
party application which operates final banking transactions.

Projects description:

In order to implement the DIGX architecture, we will create separate projects for different framework
components in Eclipse (with JDK 8)

Why separate projects? : Ensures high extensibility and loose coupling between different
components of the system. Also, in later stages, sustenance becomes easier and it helps
developers also to effectively maintain the ever-growing code.

Moving on, let’s create the following projects as shown in the Figure 2:

Figure 2 Project structure

How to create project packages and classes?

Project 1: com.ofss.digx.cz.appx.service.rest (REST project)

Create a Dynamic Web Project with the project name ‘com.ofss.digx.cz.appx.service.rest’.
Now create a package in that project with the name ‘com.ofss.digx.appx.<module_name>’ .

This package contains the endpoint class to take requests and send responses back to server. The
REST classes usually contain JAX-RS annotations and URIs which help them to locate themselves
whenever a request is made through a REST call.

All the classes in this project extend AbstractRESTApplication and also have a default interface
class prefixed with ‘I’ before the name of the corresponding REST implementation class. For

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 6

instance, Account REST class will have IAccount Interface class in the same the package of this
project.

One more important thing about this project is that this gets deployed as an application and rest of
the projects as libraries. Having said that, this project should therefore be created as Dynamic
Web Project in the New option of Eclipse IDE.

 Project dependencies for REST project:

Add the following projects (to be created later) in the Java build path of this project:

com.ofss.digx.cz.app.xface, com.ofss.digx.cz.module.<module_name>

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 7

Classpath variables:

Create the following classpath variables (left column) and extend them to the jars (names on the
right side column). Note that these libraries can be found in the OBDX Installer folder and the exact
location of each jar can be found in the section 8 (last part) of this document.

Classpath name Jars to extend

DIGX_LIB

com.ofss.digx.appcore.jar, com.ofss.digx.common.jar,
com.ofss.digx.infra.jar, com.ofss.digx.infra.audit.jar,
AbstractRESTApplication.jar, com.ofss.digx.datatype.jar,
com.ofss.digx.enumeration.jar, com.ofss.digx.module.common.jar,
com.ofss.digx.module.origination.jar,
com.ofss.digx.module.security.jar, com.ofss.digx.appcore.dto.jar

EXT_LIB All jersey2 libraries found in OBDX installer folder

OBP_LIB
com.ofss.fc.infra.jar, com.ofss.fc.appcore.dto.jar,
com.ofss.fc.appcore.jar, com.ofss.fc.enumeration.jar

Project 2: com.ofss.digx.cz.app.xface (DTO/xface project)

Create a Java Project with the project name ‘com.ofss.digx.cz.app.xface’. Now create a package
in that project with the name ‘com.ofss.digx.app.<module_name>.dto’ .

This package consists of Data Transfer Object classes, also referred as Plain Old Java Objects or
POJO. All the request as well as response DTO classes are created under this project. The Request
DTO classes in this project extend DataTransferObject present in OBP libraries whereas the
Response DTO classes extend BaseResponseObject.

 Also, every Request DTO classes will have a separate Canonicalizer class responsible for
reducing possibly encoded string parameters into its simplest form. This is therefore a very
important part that should not be missed while writing any DTO classes. Similarly, for the
Response DTO classes, we will have to write a separate Encoder class responsible for encoding
the string back to its original form for HTML pages. The naming convention for Canonicalizer and
Encoder classes will be - <RequestDTO_classname>Canonicalizer and
<ResponseDTO_classname>Encoder respectively.

Project dependencies for xface project:

Not needed.

Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath name Jars to extend

DIGX_LIB com.ofss.digx.appcore.dto.jar com.ofss.digx.infra.jar,

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 8

EXT_LIB No jars to extend

OBP_LIB com.ofss.fc.appcore.dto.jar, com.ofss.fc.infra.jar,

Project 3: com.ofss.digx.cz.module.<module_name> (module project)

Create a new Java project with this name. This project contains the vital business logic, extension
points, constraints, security checks like authorization and access control. The following packages
need to be created inside this project:

1. com.ofss.digx.app.<module_name>.service : Add the Service Interface and
Implementation class in this package. The name of Service class should be same as the
name of the REST class created in the REST project. For instance, this package will have
classes named IAccount.java and Account.java which are same as the REST class name
for Account. This service class extends AbstractApplication of the DIGX framework.

2. com.ofss.digx.app.<module_name>.service.ext: Contains classes for extensions and
executors. Each Service classes will have their own extension points. Refer mock
workspace for more detail.

3. com.ofss.digx.app.<module_name>.assembler: Create <module_name>Assembler
class inside this package. All Assembler classes extends AbstractAssembler .

4. com.ofss.digx.domain.<module_name>.entity: This package should include Entity class
for the module. The name of entity class to be created should be same as REST as well as
Service class names. For instance, it will have Account.java entity class for Account service
and REST classes. Also known as Domain classes, they extend AbstractDomainObject
taken from OBP libraries.

5. com.ofss.digx.domain.<module_name>.entity.assembler: Add a domain assembler
class with the name <module_name>DomainAssembler in this package.

6. com.ofss.digx.domain.<module_name>.entity.policy: Add the business policy classes in
this package to ensure the validation of business constraints added in these classes. Refer
workspace attached with this document for more detail. Classes in this project are again
one of the must-haves as far as enforcement of any system validation is concerned.

7. com.ofss.digx.domain.<module_name>.entity.repository: Contains repository class
(<module_name>Repository.java) which invokes Repository adapter classes described in
the next point. This class extends AbstractDomainObjectRepository of DIGX framework.

8. com.ofss.digx.domain.account.entity.repository.adapter: Add repository adapter
interfaces, Local and Remote Repository Adapter classes in this project. If you are writing
for the Account service, the naming convention of these classes should be
I<module_name>RepositoryAdapter, Local<module_name>RepositoryAdapter,
Remote<module_name>RepositoryAdapter respectively.

With this ends the package structure for service classes. The implementation of this project takes
maximum time and involves majority of the DIGX service layer handling. It is therefore a very crucial
part to look for while developing a REST API in DIGX.

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 9

Project dependencies for module project:

Add the following projects in the Java build path of this project:

com.ofss.digx.cz.adapter, com.ofss.digx.cz.app.xface

 Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath variable name Jars to extend

DIGX_LIB

com.ofss.digx.framework.domain.jar, com.ofss.digx.infra.jar
, com.ofss.digx.appcore.jar, com.ofss.digx.common.jar,
com.ofss.digx.datatype.jar,
com.ofss.digx.adapter.jar, com.ofss.digx.module.alerts.jar,
com.ofss.digx.module.approval.jar, com.ofss.digx.module.p
arty.jar, com.ofss.digx.enumeration.jar,
com.ofss.digx.module.common.jar,
com.ofss.digx.appcore.dto.jar

EXT_LIB
No jars to extend

OBP_LIB

com.ofss.fc.framework.domain.jar, com.ofss.fc.enumeratio

n.jar , com.ofss.fc.datatype.jar

, com.ofss.obp.patch.jar, com.ofss.fc.infra.jar, c

om.ofss.fc.appcore.dto.jar,

com.ofss.fc.appcore.jar, com.ofss.fc.framework.dto.jar,

Project 4: com.ofss.digx.cz.adapter (adapter project)

 Create a Java Project with this name which contains all the Adapter Interfaces in this project.
Within this project create a package with the name com.ofss.digx.app.<module_name>.adapter.
Now include the adapter interface for the adapter implementation class for your module. For
example, in case of Account module, name of the interface created should be IAccountAdapter.

 Project dependencies for adapter project:

Add the following projects in the Java build path of this project:

com.ofss.digx.cz.app.xface

 Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath name Jars to extend

DIGX_LIB com.ofss.digx.infra.jar

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 10

EXT_LIB
No jars to extend

OBP_LIB
No jars to extend

Project 5: com.ofss.digx.cz.adapter.impl (adapter impl project)

 This project contains implementation classes for all the adapter interfaces created in the
com.ofss.digx.cz.adapter project. Create a package named
com.ofss.digx.app.<module_name>.adapter.impl and add the following classes:

1. <module_name>AdapterFactory.java : Factory class to generate Adapter instances for
every getAdapter request call. Returns either mock adapter or adapter to call host interface

2. <module_name>Adapter.java: A very essential Adapter class for a specific module which
is entitled to call external host system

3. <module_name>MockAdapter.java: In case a call to host system needs to be skipped
and local mocked data needs to be fetched, this adapter class can be used

 Project dependencies for adapter impl project:

Add the following projects in the Java build path of this project:

com.ofss.digx.cz.adapter , com.ofss.digx.cz.app.xface,

com.ofss.digx.cz.module.<module_name>

 Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath name Jars to extend

DIGX_LIB
 com.ofss.digx.appcore.dto.jar, com.ofss.digx.infra.jar,
com.ofss.digx.adapter.jar, com.ofss.digx.datatype.jar,

EXT_LIB No jars to extend

OBP_LIB com.ofss.fc.framework.dto.jar

 Implementing Classes:

Refer the mock classes in the workspace attached with this project. The self-explanatory
documentation should be able to guide you towards creating the classes specified in the above
projects.

Database Scripts to be added:

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 11

There are few places where we decide which classes to be invoked in runtime. These are the
possible database configurations done in an ideal case. Please add the following entries in the
DIGX_FW_CONFIG_ALL_B table: (Account Service taken as an example and in accordance with
the workspace example)

1. INSERT INTO digx_fw_config_all_b (PROP_ID, CATEGORY_ID,
PROP_VALUE, FACTORY_SHIPPED_FLAG, PROP_COMMENTS,
SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER)
VALUES ('ACCOUNT_CZ_REPOSITORY_ADAPTER',
'repositoryadapterconfig',
'com.ofss.digx.domain.account.entity.repository.adapter.RemoteAccountReposit
oryAdapter', 'N', null, 'Adapter repository adapter class', 'ofssuser', sysdate,
'ofssuser', sysdate, 'Y', 1);

2. INSERT INTO digx_fw_config_all_b (PROP_ID, CATEGORY_ID,
PROP_VALUE, FACTORY_SHIPPED_FLAG, PROP_COMMENTS,
SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER)
VALUES ('ACCOUNT_CZ_ADAPTER_FACTORY', 'adapterfactoryconfig',
'com.ofss.digx.app.account.adapter.impl.AccountAdapterFactory', 'N', null,
'adapter factory class', 'ofssuser', sysdate, 'ofssuser', sysdate, 'Y', 1);

3. INSERT INTO digx_fw_config_all_b (PROP_ID, CATEGORY_ID,
PROP_VALUE, FACTORY_SHIPPED_FLAG, PROP_COMMENTS,
SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER)
VALUES ('ACCOUNT_CZ_ADAPTER_MOCKED', 'adapterfactoryconfig', 'false',
'N', null, 'Flag to decide to go to Mocked adapter or Remote', 'ofssuser', sysdate,
'ofssuser', sysdate, 'Y', 1);

 Configuring newly created services:

a. Task Registration

Every new service to be integrated as a part of OBDX needs to provide a task code. This task
code is required while integrating the
service with various infrastructural aspects applicable to the service. Few examples of
infrastructural aspects or cross cutting
concerns provided out of the box with OBDX are:

 Limits

 Approvals

 Two Factor Authentication

 Transaction Blackout

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 12

 Working Window

Guidelines for formulating a task code are as follows.

A task code should ideally comprise of 3 parts:

1. Module Name : The first 2 alphabets representing the module to which the service in
question belongs. eg TD represents Term Deposits
module.

2. Task Type(type of service) : OBDX supports the following 6 types of services.

a. FINANCIAL_TRANSACTION(F) : Any transaction as a result of which there is a change
in the status of the finances of accounts of
the participating parties. In general any transaction that involves monetary transfer
between parties via their accounts. Few
examples include Self transfer, New deposit(Open term deposit), Bill payment etc.

b. NONFINANCIAL_TRANSACTION(N) : Any transaction that pertains to an account but
there is no monetary payment or transfer involved
in it. For example Cheque book request.

c. INQUIRY(I) : Any read only transaction supported in OBDX that does not manipulate any
business domain of the financial
institution. For example list debit cards, read loan repayment details, fetch term deposit
penalties etc.

d. ADMINISTRATION(A) : Transactions performed by bank admins and corporate admins
for a party come under this category. Few examples of
such transactions include limit definition, limit package definition, user creation, rule
creation and various others.

e. MAINTENANCE(M) : Maintenances done by a party for itself fall under this category.
Maintenance transactions performed by a
non admin user which does not involve any account or monetary transaction comprise of
this transaction type. Example add biller.

f. COMMON(C) : Common transactions include transactions which do not fall under any of
the above mentioned categorization. Example login.
So 1 alphbet F,N,I,A,M or C for each of the above mentioned task types respectively
forms the second part of the task code.

3. Abbreviation for service name : A 3 to 10 lettered abbreviation for the service name.
Example OTD for Open Term Deposit.
All the above mentioned 3 parts are delimited by an underscore character.
Example : TD_F_OTD where TD represents module name. F represents that its a financial
transaction i.e. task type and OTD is the abbreviated
form of the transaction(service) name.

Steps to register a task with OBDX:

The task code needs to be configured in the database table DIGX_CM_TASK. For example if we
consider Open Term Deposit then the below
query fulfills the requirement mentioned in this step.

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 13

Insert into DIGX_CM_TASK (ID, NAME, PARENT_ID, EXECUTABLE,

APPROVAL_SUPPORTED, LIMIT_REQUIRED, TASK_TYPE, MODULE_TYPE, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,

OBJECT_VERSION_NUMBER, WORKING_WINDOW_SUPPORTED, TFA_REQUIRED,

BLACKOUT_SUPPORTED) values ('TD_F_OTD', 'New Deposit', 'TD_F', 'Y', 'Y', 'N',

'FINANCIAL_TRANSACTION', 'TD', 'ofssuser', sysdate, 'ofssuser', sysdate, null, 1, 'Y', 'N', 'Y');

As evident from the above query example Tasks have a hierarchy. Every task might have a
parent task denoted by the task code value held
by the PARENT_ID column of DIGX_CM_TASK. In most of the cases its a 3 level hierarchy.

 Leaf level tasks to which services are mapped at the lowest level

 Task representing the module to which the service belongs at the mid level

 Task representing the task type at the root level

For instance consider the task code AP_N_CUG which represents the Usergroup creation service
under module approvals(AP). So the
PARENT_ID column of task AP_N_CUG(leaf level task) has task code as AP(mid level task). If
we look at the entry for task code
AP(mid level task) then the value in the PARENT_ID column of DIGX_CM_TASK has MT(root
level task) which is the task code representing
task type ADMINISTRATION. The leaf level task has 'Y' as the value in its EXECUTABLE
column. The mid level and root level tasks have 'N' as the value in its EXECUTABLE column.

 Step 2. Register the newly created service against this task.

For this step firstly, you need to get the service id for your service(transaction). Service id is
the fully qualified name of the
class appended by the dot character (.) and the method name. For example taking open
term deposit into consideration, the business
logic for the service is encapsulated in the method named create of the service
class com.ofss.digx.app.td.service.account.core.TermDeposit.
Hence the service id is derived as
: com.ofss.digx.app.td.service.account.core.TermDeposit.create
Secondly the below query fulfills the requirement mentioned in this step.

insert into DIGX_CM_RESOURCE_TASK_REL (ID, RESOURCE_NAME, TASK_ID,

CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,

OBJECT_STATUS, OBJECT_VERSION_NUMBER) values ('1',

'com.ofss.digx.app.td.service.account.core.TermDeposit.create', 'TD_F_OTD', 'ofssuser',

sysdate, 'ofssuser', sysdate, null,1);

The aforesaid procedure enrolls your newly created service as a task in OBDX.

Limit Configuration

The below procedure describes the steps required to enable Limits for a newly developed service.

A prerequisite to this configuration is that this newly developed service should be registered as a
task in OBDX. Refer “Task Registration” section for further details.The types of Limits supported
by the system are:

http://com.ofss.digx.app.td/
http://com.ofss.digx.app.td/
http://com.ofss.digx.app.td/

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 14

 Periodic Limit(Cumulative) : Limits that get reset after the expiration of a period. Example
Daily-limits.

 Duration Limit(Cooling Period) : Limits that get applicable after the occurence of an event,
for instance payee creation, and
then are applicable for the specified duration after commencement of the event.

 Transaction Limit : Limits applicable to each invocation of a transaction. Holds minimum and
maximum amount that can be transacted in a single transaction invocation.

Limits are applicable to targets. The types of targets supported by OBDX are Task and Payee.

1. Task : Any service developed as a part of OBDX and registered as a task as mentioned
here TASK REGISTRATION

2. Payee : A payee resource created via Payee creation transaction in OBDX.

 To enable limits for a service, rather for a task mapped to the service to be precise, we need

to follow the below mentioned steps:

 Ensure that the LIMIT_REQUIRED column of the DIGX_CM_TASK table is updated as 'Y' for
your task id.

 Step 2. Register taskEvaluatorFactory for your task code.
This needs an insert in DIGX_FW_CONFIG_ALL_B table under the category_id
'taskEvaluatorFactories' as shown below

Insert into DIGX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,

OBJECT_VERSION_NUMBER) values (<<taskcode>>, 'taskEvaluatorFactories',

'com.ofss.digx.framework.task.evaluator.DefaultTaskEvaluatorFactory', 'N',

null, 'Task Evaluator Factory for Mixed FT', 'ofssuser', sysdate, 'ofssuser', sysdate,

'Y', 1);

3. Code a LimitDataEvaluator for the task. LimitDataEvaluator is a class that implements
ILimitDataEvaluator interface present in com.ofss.digx.finlimit.core jar. This is a functional
interface with a single method having signature as shown below :

/**

* provide {@link LimitData} of currently executing task.

*

* @param serviceInputs

* the service inputs

* @return {@link LimitData} required for limit utilization and validation

* @throws Exception

*/

public LimitData evaluate(List<Object> serviceInputs) throws Exception;

file:///C:/confluence/display/OBDX/TASK+REGISTRATION

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 15

This method recieves a List<Object> as an input. This list has all the arguments that were passed
to the newly coded service for
which limits needs to be enabled. For instance consider the service to open a termed deposit.
Signature of the service is as
shown below.

public TermDepositAccountResponseDTO create(SessionContext sessionContext,
TermDepositAccountDTO termDepositAccountDTO) throws Exception

In this case when the LimitDataEvaluator coded for open term deposit task i.e. TD_F_OTD is
invoked by the OBDX framework, the serviceInputs argument of evaluate method will contain 2
objects in the list namely SessionContext and TermDepositAccountDTO. The return type of
evaluate method is LimitData. The state of a LimitData object comprises of three variables:

 currencyAmount : an Object of type CurrencyAmount which represents the monetary
amount involved in the ongoing transaction along with the currency in the transfer or
payment is made.

 payee : An object of type PayeeDTO. Needs to be populated in case a payee is involved in
the transaction.

 limitTypesToBeValidated : A list of LimitTypes. For all unexceptional practical purposes
this needs to be populated as shown below:

limitTypesToBeValidated = new

ArrayList<LimitType>(Arrays.asList(LimitType.PERIODIC,LimitType.DURATION,LimitType.

TRANSACTION));

These 3 fields in case applicable needs to be derived from the argument serviceInputs and

populated in the returned LimitData

object.

 Register the LimitDataEvaluator coded in Step 3.

This needs an insert in DIGX_FW_CONFIG_ALL_B table under the category_id

'limitDataEvaluator' as shown below Insert into DIGX_FW_CONFIG_ALL_B (PROP_ID,

CATEGORY_ID,PROP_VALUE, FACTORY_SHIPPED_FLAG, PROP_COMMENTS,

SUMMARY_TEXT, CREATED_BY, CREATION_DATE,

LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,

OBJECT_VERSION_NUMBER)

values (<<task code>>, 'limitDataEvaluator', <<limitDataEvaluator>>, 'N',

'Limit data evaluator for <<service name>> service', null, 'ofssuser', sysdate, 'ofssuser',

sysdate, 'A', 1);

In the above query <<task code>> is the task code for the service, <limitDataEvaluator>> is

the fully qualified name of the class coded in Step 3. <<service name>> is a descriptive

name for the service.

 Step 5. Code a TargetEvaluator for your task.

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 16

Note : This step is needed only if your task requires limits involving Payees. Example Duration
Limits and payee limits.

Payee limits are Periodic and Transactional limits applied on a Payee.

TargetEvaluator is a class that implements ITargetEvaluator interface. ITargetEvaluator is a
functional interface that has only 1 method as shown below :

/**
* Evaluates the Target details for the given evaluated task code and service inputs in the form of
* {@link TargetDTO}.
*
* @param evaluatedTaskCode
* the given evaluated task code
* @param serviceInputs
* inputs of the service using this evaluator
* @return target details of the target for this task code and service inputs in the form of {@link
TargetDTO}.
* @throws Exception
* exception while evaluating {@link TargetDTO}
*/
public TargetDTO evaluate(String evaluatedTaskCode, List<Object> serviceInputs) throws
Exception;

This method accepts the task code and serviceInputs in case something needs to be derived
from the arguments passed to the
service.

It returns a TargetDTO. TargetDTO has an id, name, value and TargetTypeDTO. TargetType tells
whether the target is of type task or payee. If the TargetType is TASK then the variable value of
TargetDTO holds the task code for the service.

If the TargetType is PAYEE then the variable value of TargetDTO holds the payeeId of the payee
involved in the service.

As this step is required only for limits pertaining to payees so TargetType will be PAYEE and
targetDTO's value will be payeeId.

Register the TargetEvaluator coded in Step 5.

Note: This step is needed only if your task requires limits involving Payees. Example Duration
Limits and payee limts.

Payee limits are Periodic and Transactional limits applied on a Payee.

This needs an insert in DIGX_FL_TARGET_EVALUATOR table as shown below:

Insert into DIGX_FL_TARGET_EVALUATOR (TASK_CODE, TARGET_TYPE, EVALUATOR,
PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY, CREATION_DATE,
LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,
OBJECT_VERSION_NUMBER) values (<<task code>>, 'PAYEE', <<TargetEvaluator>>, null,

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 17

'target evaluator for <<service name>> service', 'ofssuser', sysdate, 'ofssuser', sysdate, 'Y',
1);

In the above query <<task code>> is the task code for the service, <<TargetEvaluator>> is the
fully qualified name of the
class coded in Step 5. <<service name>> is a descriptive name for the service.

 The aforesaid procedure enables limits for a task in OBDX.

Approval Configuration

The below procedure describes the steps required to enable Approvals for a newly developed
service.

A prequisite to this configuration is that this newly developed service should be registered as a
task in OBDX. Refer “Task Registration” section for further details.

To enable approvals for a service, rather for a task mapped to the service to be precise, we need
to follow the below mentioned steps:

 Ensure that the APPROVAL_SUPPORTED column of the DIGX_CM_TASK table is updated
as 'Y' for your task id.

 Note : If the newly created task is of type ADMINISTRATION and the maintenance is not
specific to a party then this step is not
required. Examples of such transaction are 2 Factor Authentication maintenance, limit
maintenance and limit package maintenance.
Tasks of type ADMINISTRATION which are specific to a party like Rule management tasks,
workflow management tasks etc require this step.
Tasks of type
FINANCIAL_TRANSACTION,NONFINANCIAL_TRANSACTION,MAINTENANCE,INQUIRY
and COMMON require this step.

Code an approval assembler for the new task. An approval assembler is a class that
extends AbstractApprovalAssembler.

There are 4 methods in abstract approval assembler out of which the one with the below
signature:

protected T toDomainObject(D requestDTO, T transaction) throws Exception;
will encapsulate the logic required to populate Transaction domain which is used by
approvals framework.

Rest of the methods need to be overridden with empty or null implementations.
As evident from the signature quoted above this method accepts a requestDTO(an object
that IS A DataTransferObject) and a transaction(an object that IS A Transaction).
requestDTO is the same DataTransferObject that was passed to your newly created service.
For instance consider the service to open a termed deposit. Signature of the service is as
shown below.

public TermDepositAccountResponseDTO create(SessionContext sessionContext,
TermDepositAccountDTO termDepositAccountDTO) throws Exception

In this case when the ApprovalAssembler coded for open term deposit task i.e. TD_F_OTD

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 18

is invoked by the OBDX framework, the requestDTO argument of toDomainObject method
will be the same as termDepositAccountDTO.

This method populates the transaction object on the basis of the requestDTO and returns
the transaction domain. The guidelines
to override this method are as follows:-

 Instantiation :
The transaction object passed will be null and needs to be instantiated. If the task type of the
newly created service is FINANCIAL_TRANSACTION then the transaction needs to be
instantiated as an object of AmountAccountTransaction.

transaction = new AmountAccountTransaction();

If the task type of the newly created service is NONFINANCIAL_TRANSACTION then the
transaction needs to be instantiated as an
object of AccountTransaction.

transaction = new AccountTransaction();

If the task type of the newly created service is MAINTENANCE then the transaction needs to
be instantiated as an object of PartyTransaction.

transaction = new PartyTransaction();

If the task is of type ADMINISTRATION and the maintenance is specific to a party then the
transaction needs to be instantiated as an object of PartyTransaction.

transaction = new PartyTransaction();

If the task is of type ADMINISTRATION and the maintenance is not specific to a party then
the transaction needs to be instantiated
as an object of Transaction.

transaction = new Transaction();

 Call to AbstractApprovalAssembler :

Call
transaction = super.toDomainObject(requestDTO, transaction);

This populates the generic state of transaction domain which does not change with the task
for which approvals is being configured.
c. Populate the state of the transaction domain which is specific to the task for which
approvals is being configured. Cast the

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 19

requestDTO to the type being accepted by the service. For example cast it to
TermDepositAccountDTO as per the aforesaid example.
Use this DTO to populate the service specific state of the transaction domain like amount,
account etc.

 Step 3. Register an approval assembler for your service or task.

To register an approval assembler for your service an entry needs to be made in the
database table DIGX_FW_CONFIG_ALL_B with
the value of column CATEGORY_ID as 'approval_assembler'.

If the newly created task is of type ADMINISTRATION and the maintenance is not specific to
a party then the approval assembler to be registered against your service is
om.ofss.digx.framework.domain.transaction.assembler.GenericDTOTransactionAssembler
2 Factor Authentication Maintenance is a fine example of such transactions. The service id
for this transaction is com.ofss.digx.app.security.service.authentication.maintenance.
AuthenticationMaintenance.

create
The below query fulfills the requirement of this step:

Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,
CATEGORY_ID,
PROP_VALUE,
FACTORY_SHIPPED_FLAG,
PROP_COMMENTS,
SUMMARY_TEXT,
CREATED_BY,
CREATION_DATE,
LAST_UPDATED_BY,
LAST_UPDATED_DATE,
OBJECT_STATUS,
OBJECT_VERSION_NUMBER)
values
('com.ofss.digx.app.security.service.authentication.maintenance.AuthenticationMaintenance.
create',
'approval_assembler',
'com.ofss.digx.framework.domain.transaction.assembler.GenericDTOTransactionAssembler'
,
'N',
'assembler class for conversion from UserSegmentTFAMaintenanceDTO to Transaction
domain',
'assembler class for conversion from UserSegmentTFAMaintenanceDTO to Transaction
domain',
'ofssuser',
sysdate,
'ofssuser',
sysdate,
'A',
1);

In all other cases where you have implemented a custom approval assembler as per the
guidelines in step 2, the fully qualified

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 20

class name of that approval assembler will be registered against your service. The below
query fulfills the requirement of
this step:

Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,
CATEGORY_ID,
PROP_VALUE,
FACTORY_SHIPPED_FLAG,
PROP_COMMENTS,
SUMMARY_TEXT,
CREATED_BY,
CREATION_DATE,
LAST_UPDATED_BY,
LAST_UPDATED_DATE,
OBJECT_STATUS,
OBJECT_VERSION_NUMBER)
values
(<<service id>>,
'approval_assembler',
<<ApprovalAssembler>>,
'N',
'assembler class for conversion from DataTransferObject to Transaction domain',
'assembler class for conversion from DataTransferObject to Transaction domain',
'ofssuser',
sysdate,
'ofssuser',
sysdate,
'A',
1);
In the above query <<service id>> is the fully qualified name of the class appended by the
dot character (.) and the method
name. <<ApprovalAssembler>> denotes the fully qualified class name of the approval
assembler coded in Step 2.

 The aforesaid procedure enables approvals for a task in OBDX.

Creating EARs:

Once all the classes are created and implemented, generate the required ear deployments. The
following two EARs need to be created: com.ofss.digx.cz.appx.service.rest.ear and
obdx.app.cz.domain.ear.

To generate an EAR in eclipse, we need to create an Enterprise Application Project and include
the required project/s during the creation. I am adding screenshot for creating
com.ofss.digx.cz.appx.service.rest.ear , similar changes can be made for second EAR as well.

 Steps to generate EAR in Eclipse:

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 21

Create an Enterprise Application Project (EAP) from the “New” option. Give details as mentioned
in the Figure 3 and click on Next button

Figure 3 Creating new EAR Application Project

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 22

Figure 4 Creating new EAR Application Project

ii. On the next screen, select com.ofss.digx.cz.appx.service.rest project and check on Generate
application.xml deployment option as shown in the Figure 4. Click on Finish button after that.

Once the EAP is created, right click on that project and select export EAR option in that. Give the
EAR name as ‘com.ofss.digx.cz.appx.service.rest.ear’ with the complete destination path.
Please refer the Figure 5 for more details:

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 23

Figure 5 Exporting EAR to the destination path

The EAR will be successfully created at the mentioned destination and similar steps can be
performed to create the second EAR - obdx.app.cz.domain.ear.

Note: The only difference will be the projects to be included (in this case, include the rest of the
Java projects - which were not selected while creating the first EAR in the Figure 4) and keep the
checkbox unchecked for Generate application.xml deployment option in the Figure 4. Once these
two EARs are generated, go through the following changes in the web.xml, weblogic.xml,
application.xml, and weblogic-application.xml files of the EARs

Adding web.xml:

Add the web.xml file from the com.ofss.digx.appx.service.rest.ear to the custom REST ear
com.ofss.digx.cz.appx.service.rest.ear. This xml file can be found at the same location:
com.ofss.digx.cz.appx.service.rest.ear / com.ofss.digx.cz.appx.service.rest.war / WEB-INF/

No changes need to be made in this file.

Changes in weblogic-application.xml:

Please copy weblogic-application.xml file from the com.ofss.digx.appx.service.rest.ear present
in the OBDX_Installer folder to the custom REST EAR’s META-INF folder. This file can be found
at the location: com.ofss.digx.appx.service.rest.ear / META-INF of the
com.ofss.digx.appx.service.rest.ear

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 24

Once it is copied, make the following changes in the weblogic-application.xml file:

Add <wls:library-ref><wls:library-name>obdx.app.cz.domain</wls:library-name></wls:library-ref>
entry after the library reference of obdx.app.core.domain.

This ensures that along with the existing libraries, the newly created custom domain ear
obdx.app.cz.domain.ear can be referenced by this custom REST application EAR.

Changes in weblogic.xml:

Please Copy weblogic.xml file from the com.ofss.digx.appx.service.rest.ear present in the
OBDX_Installer folder to the newly generated custom REST EAR’s WEB-INF folder. The exact
path of weblogic.xml file is:

com.ofss.digx.cz.appx.service.rest.ear / com.ofss.digx.cz.appx.service.rest.war / WEB-INF

Now open weblogic.xml and in the <wls:context-root> option, update the value from digx to
‘digx/cz’. The context root is changed and therefore the prefix url to all REST resources in this EAR
will become ‘digx/cz/v1/’

Changes in application.xml file:

Update application.xml file present in com.ofss.digx.cz.appx.service.rest.ear. Make changes in
the <contex-root> entry and update it to ‘digx/cz’.

Please copy application.xml file from the obdx.app.domain.ear present in the OBDX_Installer
folder to the obdx.app.cz.domain.ear META-INF folder. Also, you will need to copy empty.jar
present in the obdx.app.domain.ear. Now open this application.xml recently copied in the custom
domain ear and change the <display-name> entry to ‘obdx.app.cz.domain’ .

 Note: AbstractRESTApplication.jar needs to be shipped along with the supporting deployable
components of OBDX application. Once it is found in OBDX_Installer folder, add this jar to the
following path of custom REST ear:

com.ofss.digx.cz.appx.service.rest.ear/com.ofss.digx.cz.appx.service.rest.war/WEB-INF/lib/

After this step, both the EARs are ready to be deployed on the Weblogic server.

1. Deploying application in Weblogic:

The two EARs created in the previous step should be deployed in the existing deployment setup.
Please deploy the com.ofss.digx.cz.appx.service.rest.ear as an application and
obdx.app.cz.domain.ear as library.

2. Test the application:

Once the application is up, please go to the deployments section of the Weblogic Server. In the
control option, you’ll find the option to test the application. Just to verify, check whether the context-
root of the custom application is changed to digx/cz. The request URL for testing this application
will be –s

http://<hostname>:<port>/digx/cz/v1/application.wadl

Creating your own REST API with DIGX Framework

Oracle Banking Digital Experience Custom Service Development Guide 25

Location for libraries in the installer folder:

Root_Location: OBDX_17.1.0.0.0/OBDX_Installer/installables/app/components/obdx/deploy/

DIGX_LIB Root_Location/obdx.app.domain.ear/APP-INF/lib/

EXT_LIB
Root_Location/obdx.thirdparty.app.domain.ear/APP-
INF/lib/

OBP_LIB
Root_Location/obdx.app.core.domain.ear/APP-
INF/lib/

